Receptors

Receptors are biological transducers that convert energy from both external and internal environments into electrical impulses. They may be massed together to form a sense organ, such as the eye or ear, or they may be scattered, as are those of the skin and viscera. Receptors are connected to the central nervous system by afferent nerve fibres. The region or area in the periphery from which a neuron within the central nervous system receives input is called its receptive field. Receptive fields are changing and not fixed entities.

Receptors are of many kinds and are classified in many ways. Steady-state receptors, for example, generate impulses as long as a particular state such as temperature remains constant. Changing-state receptors, on the other hand, respond to variation in the intensity or position of a stimulus. Receptors are also classified as exteroceptive (reporting the external environment), interoceptive (sampling the environment of the body itself), and proprioceptive (sensing the posture and movements of the body). Exteroceptors report the senses of sight, hearing, smell, taste, and touch. Interoceptors report the state of the bladder, the alimentary canal, the blood pressure, and the osmotic pressure of the blood plasma. Proprioceptors report the position and movements of parts of the body and the position of the body in space.

Receptors are also classified according to the kinds of stimulus to which they are sensitive. Chemical receptors, or chemoreceptors, are sensitive to substances taken into the mouth (taste or gustatory receptors), inhaled through the nose (smell or olfactory receptors), or found in the body itself (detectors of glucose or of acid-base balance in the blood). Receptors of the skin are classified as thermoreceptors, mechanoreceptors, and nociceptors the last being sensitive to stimulation that is noxious, or likely to damage the tissues of the body. Thermoreceptors are of two types, warmth and cold. Warmth fibres are excited by rising temperature and inhibited by falling temperature, and cold fibres respond in the opposite manner.

Mechanoreceptors are also of several different types. Sensory nerve terminals around the base of hairs are activated by very slight movement of the hair, but they rapidly adapt to continued stimulation and stop firing. In hairless skin both rapidly and slowly adapting receptors provide information about the force of mechanical stimulation. The Pacinian corpuscles, elaborate structures found in the skin of the fingers and in other organs, are layers of fluid-filled membranes forming structures just visible to the naked eye at the terminals of axons. Local pressure exerted at the surface or within the body causes deformation of parts of the corpuscle, a shift of chemical ions (e.g., sodium, potassium), and the appearance of a receptor potential at the nerve ending. This receptor potential, on reaching sufficient (threshold) strength, acts to generate a nerve impulse within the corpuscle. These receptors are also activated by rapidly changing or alternating stimuli such as vibration all receptors report two features of stimulation, its intensity and its location. Intensity is signaled by the frequency of nerve impulse discharge of a neuron and also by the number of afferent nerves reporting the stimulation. As the strength of a stimulus increases, the rate of change in electrical potential of the receptor increases, and the frequency of nerve impulse generation likewise increases.

By – HOD – -: Mr. Anil Bisht
Department -ZOOLOGY
UCBMSH Magazine – (YouthRainBow)
UCBMSH WEBSITE – Uttaranchal (P.G.) College Of Bio-Medical Sciences & Hospital
UCBMSH B.ED WEBSITE – Uttaranchal College of Education
UCBMSH NURSING WEBSITE – College Of Nursing UCBMSH
REGISTRATION – Apply Online
For any queries & Admission Call at: 8192007210, 8192007206, 9319924110, 8191007033

 

Related Posts

Leave a Reply

Your email address will not be published. Required fields are marked *